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This work presents a model for the formation of density patterns in certain one-dimensional systems
where the particle flux is a well-defined function of particle density (e.g., traffic flow or granular flow in a
tube). In these systems, macroscopic regions characterized by large density contrasts are observed to
evolve from very small-scale fluctuations. This paper shows that such patterns develop naturally when
the small-scale noise is viewed as a set of stable density regions which propagate according to the formal-
ism of kinematic waves. In the theory of kinematic waves, the interface separating a region of density p,
from a region of density p, moves with a velocity v =[j(p;)—j(p,)]/(p,—p,), where j(p) is the flux at
density p. With interfaces propagating according to this equation, both analytic and numerical results
indicate that the noisy state is quickly replaced by a state in which neighboring density regions have a
very large density contrast. Thus interacting kinematic waves and small-scale fluctuations are all that is

necessary for this pattern formation.

PACS number(s): 05.40.+j, 05.60.+w, 46.10.+z, 89.40.+k

I. INTRODUCTION

One of the most universal experiences of modern life is
sitting in traffic. It happens all over the world, and many
researches have undertaken the study of this problem in
order to understand the basic mechanism behind this
phenomenon [1,2]. Among the numerous models for
traffic flow, the one of most relevance to this study is a re-
cent cellular automation model which is able to produce
complex traffic patterns from a simple set of rules for
driver behavior [2]. One of the key ingredients for the
formation of these patterns is the presence of noise in the
system, which can come in the form of disorder in the ini-
tial automobile positions, or through random “braking”
events. In either case, this automaton produces very
complicated traffic patterns which always possess regions
of high traffic flow and regions with traffic jams.

A related problem, but one which is not such a part of
everyday life, is the formation of density patterns in the
flow of granular materials. When sand flows down a long
tube, a spontaneous density pattern appears with regions
of very high density in which the grains move very slow-
ly, and low-density regions in which the velocity of the
individual grains is very fast [3]. This pattern can be seen
to move up or down, depending on experimental condi-
tions. Similar patterns were also reported in the flow of
granular materials through a hopper (i.e., a tube nar-
rower at the bottom than the top) [4]. Numerical simula-
tion of these two geometries using the techniques of
molecular dynamics have been able to reproduce this
behavior [3,5,6].

For the traffic problem, the theory of kinematic waves
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is able to explain the behavior of a single traffic jam mov-
ing in a uniform density background [7]. This theory is
driven by the observation that in certain one-dimensional
systems, there is a well-defined relationship between the
flux, j(x), at a point x, and the local density, p(x) [i.e.,
j(x)=j(p(x))]. The continuity equation,

9,p(x)+Vj(x)=0, 1.1

then requires that the front which separates two regions
of differing densities propagates with a well-defined veloc-
ity, v,. The velocity for a front which separates a region
with density p, from a region of density p, is given by the
equation

_Jlp)—ilpy)
P1™ P2 ’

U_f (1.2)

where j(p) is the flux, or throughput, for the density p.
Thus the propagation of the jammed regions is complete-
ly determined by the flux curve j(p) for traffic flow.

In order to use kinematic wave theory to understand
the density pattern in a granular system, there must be a
well-defined j(p) for the granular flow. In recent work
by Lee, this curve has been measured using molecular-
dynamics techniques which simulate the flow of spherical
particles down a narrow tube [6]. He was also able to
show that the velocity of these propagating fronts is
given by Eq. (1.2).

The observation in both traffic and granular flow is
that these systems evolve into a state in which high-
density and low-density regions exist side by side, and
that such density patterns travel coherently for some
time. In both systems, these patterns begin as fluctua-
tions at small length scales. This paper presents a possi-
ble mechanism by which these microscopic fluctuations
evolve into the observed large-scale density patterns.

The basic idea behind this work is that if these small-
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scale density fluctuations are treated in the same manner
as the large-scale perturbations [i.e., as density regions
with stable interfaces which move according to Eq. (1.2)],
then the system will naturally evolve to a state in which
the density contrast between adjacent regions is, on aver-
age, as large as the largest fluctuations present in the
original noise. Thus it is the interacting kinematic waves
that produces the observed pattern. This view is in con-
trast to the idea that the density pattern results from
some solution of the dynamic equation of motion.

The distinction between “dynamic” waves and kine-
matic waves is very subtle. This question is treated in
some detail in the original work on kinematic waves by
Lighthill and Whitham [7], and is also discussed by Lee
[6]. The most important property of the kinematic wave
approach is that the constraint of mass conservation,
along with the flux curve j(p), is all that is needed to
determine the motion of an interface.

Another useful feature of the kinematic approach
comes from the fact that many times the equation of
motion can be very difficult to determine, while the flux
curve can be measured or calculated with relative ease.
This is certainly the case for sand flowing through a tube,
and for traffic flow.

One of the basic assumptions in this work is that well-
defined fronts exist which separate regions of different
densities, and that such fronts are stable in time. This, in
general, is not true. In the original paper on kinematic
waves, it was shown that for the case of a traffic jam, the
back of the jam quickly forms into a well-defined shock
[7]. The leading edge, on the other hand, is shown to
diffuse and this diffusion dissipates the entire jam at long
times. Thus the results shown here may not properly de-
scribe the evolution at long times. However, at short
times this approach should describe the essential
behavior.

Additionally, there may be some properties of the sys-
tem dynamics which do indeed act to stabilize these
fronts. In the case of the cellular automation model for
traffic flow, the nature of the acceleration rules for each
car fixes the length scale over which the transition from a
high-density to a low-density region occurs. Thus the as-
sumption of well-defined fronts is valid at sufficiently
large length scales.

The model system that is studied here is simple. Place
N, points at random on an interval of length L. To each
of the region between two successive points assign a den-
sity p;. This density is taken from a uniform distribution
in the range [py—W,pp+W)]. Each point then
represents an interface between two density regions. The
velocity of each interface is determined by (1.2), and it is
a simple matter to propagate the interfaces forward in
time, observing the evolution of the system. Figure 1
shows this schematically, and indicates how a density re-
gion can be “swallowed up” by its nearest neighbors. In
this approach, no additional interfaces are ever created,
and the density in a region can never become larger or
smaller than any of the densities initially present. Be-
cause Eq. (1.2) is derived from the continuity equation,
the mass of the system is conserved at all times during
the evolution. Thus, if a density region is lost, this means
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FIG. 1. Schematic representation of the evolution of a densi-
ty pattern. In going from the upper configuration to the lower
one, the region labeled X is “swallowed up” by its neighbors.

that all of the mass has simply been redistributed to its
neighbors.

The principal numerical results of this paper are as fol-
lows. At early times, the number of interfaces decreases
at a constant rate. As the number of interfaces is de-
creased, a correlated state is created in which the density
pattern is “striped” in the sense that only those interfaces
remain that separate regions which have large density
contrasts (see Fig. 2). Once this state is reached, the
behavior changes radically—the number of interfaces be-
gins to decrease as a power law in time.

The evolution to the striped state can be understood
from a relatively simple calculation which gives the evo-
lution of the system at early times. The long-time
power-law behavior is, however, much more problematic.
The principle difficulty in understanding this evolution
lies in the characterization of the striped density state.

The rest of this paper is organized in the following
manner. In Sec. II, there is a discussion of the elementa-
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FIG. 2. Representation of a striped state. The density con-
trast between neighboring region is of the same order as the
overall range of densities in the system. The lower
configuration is an alternative type of pattern in which region
with similar densities cluster together, and results in smaller
density differences across each interface.
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ry interaction between two interfaces, and of what these
basic properties imply for the overall system evolution.
Section III contains an analytical calculation of the sys-
tems behavior at early times. Section IV is devoted to a
direct simulation of the model, and also compares these
results with the predictions from Sec. III. Section V con-
tains some concluding remarks concerning diffusion and
the applicability of the model to real systems.

II. TWO INTERFACE INTERACTIONS

The model system evolves in time through the move-
ments of the interfaces. Whenever two interfaces meet, a
density region disappears, and the density pattern is
changed in a fundamental way. It is through a sequence
of these two interface collisions that the system moves to-
wards its final state; thus understanding this basic “unit”
of the evolution is the first step in understanding the
pattern-formation process.

It is worthwhile beginning with a presentation of a
mapping of this interface problem to a collision problem
from classical mechanics. The interaction of two inter-
faces involves three density regions, p;, p,, and p;, as
shown in Fig. 3. Let the interfaces between regions 1 and
2 and regions 2 and 3 move with velocity v, and v, re-
spectively. Imagine that the densities are such that the
interfaces meet and region 2 disappears. The new inter-
face between regions 1 and 3 then moves with velocity v,.
From Eq. (1.2) these velocities can be written as

_Jp)—j(py) _Jpa)—Jj(p3)
Vg T T, Uy T T ,
P17 P2 P27 P3
, , 2.1)
_Jtp)—j(p3)
P17 P3

A simple substitution for j(p;) and j(p3) yields the ex-
pression

(p1—p3)v, =(py—py)v, +(py—p3ly, - 2.2)

This expression for the final velocity is exactly the equa-
tion for the conservation of momentum for a perfectly in-
elastic collision where the ‘“mass” of each interface is
simply the difference in density across the interface.
Define the effective mass of an interface, m;, for each in-
terface as

m;=p; =Pi+1> (2.3)
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FIG. 3. Basic two-interface collision. State on the left is the
initial configuration which evolves to the one shown on the
right. The smaller arrows indicate the velocities of the inter-
faces.

where i indexes each region in the system. Mass conser-
vation in the collision follows from the fact that

(pr—=p)+(pry—pi)=(pi—p3) . (2.4)

However, three things distinguish this particle collision
picture from a set of random masses colliding inelastical-
ly. First, Eq. (2.3) allows for the existence of particles
with negative mass. Second, because neighboring inter-
faces always share one region in common, there exists
some correlation between the masses of neighboring par-
ticles. Finally, the curve j(p) gives a relationship be-
tween the mass of the interface and the velocity. Thus
the mass of a particle and its velocity are highly correlat-
ed.

In order to continue analysis (beyond just mapping one
difficult problem into another one), it is necessary to
make some assumptions about the curve j(p). For the
case of traffic flow this curve is observed to be convex (as
in Fig. 4). In the numerical simulations of granular flow
in a tube geometry, this curve is also found to be convex.
This is equivalent to the condition that the flow velocity
is a decreasing function of density.

For the case of convex j(p), it is possible to divide all
possible two interface configurations into six different
categories, as shown in Fig. 5. The classification for a
given two-interface configuration is determined by the in-
equality between the three values for the densities. The
first case shown is p;<p,<p;. In the following, these
different configurations will be referred to as class 4 - F,
with the letter referring to the labeling in the figure.

For three of these configurations, there is a collision,
with the middle region being swallowed up by the other
two. The three scenarios that result in the destruction of
the central region have the common feature that p, <p;.
Thus for the case of a two-interface interaction, whether
or not a particular region survives is not dependent on its
density, but on the densities of the regions around it. In
the other cases with p,> p;, the central region grows in
time, and there is no collision.

Also interesting are the implications for typical traffic-
jam-creating events. Consider a uniform flow of traffic
with density p,. Suddenly, one driver brakes. Thus in
front of the car is created a region of low density, and
behind a region with slightly higher density. This is
shown in Fig. 6. The newly created high-density region
(region 2) is a class C configuration; therefore, this region
will grow in time. The less dense region (region 3) falls

i(p)

p

FIG. 4. Typical flux curve. For this curve j”(p) is always
negative.



49 PATTERN-FORMATION CHARACTERISTICS OF INTERACTING . .. 187

I ]
A = |

1| 2] 3 1| 2 |3
B 123*1 2 |3
c T |_=» .

1|23 1l 2 |3
b —

123* 1 3

— o

: >

1| 2|3 1 3
I . —

11 2]3 1 | 3

FIG. 5. Fundamental two interface interactions. The
configurations on the left evolve in time to the ones on the right.
Configurations A, B, and C result in region 2 growing in time,
while D, E, and F result in the elimination of region 2.

into class B, and this region will also become larger. It is
clear that random braking events create regions with con-
trasting densities.

Consider, conversely, the random acceleration by a
driver. Such an event creates a high-density region in
front of the automobile, and a less dense region behind,
as shown in Fig. 6. In this case, region 2 falls into class
D, and it will be destroyed in time. Region 3 is a class F
configuration, and is also engulfed by the regions around

—

1 |2(3] 4 a 1]2]3 | 4
Braking Event

1 |2]3] 4 a 1 4

Acceleration Event

FIG. 6. Density fluctuations in traffic model. The upper pic-
ture shows the evolution of the density fluctuations that result
from a braking event. The lower picture shows an acceleration
event, and the configuration to which it evolves.

it. Thus random accelerations do not affect the large-
scale density pattern.

Finally, again consider the set of three density regions
shown in Fig. 3. Let the length of region 2 be given by /.
If p, <p;, then region 2 will disappear when these two in-
terfaces collide, at some time, ¢. This time is given by

t=1/(v,—vp) . (2.5)

Using Eq. (1.2), this can be written in terms of j(p) and
the three values for the densities. Consider now an ex-
pression of j(p) around some py,

J(P)=Jj(po)+J'(po)p—po)
+1j"(po)p—po)*+O0[(p—po)’] -
Substituting in this expansion for j(p), Eq. (2.5) becomes

I
- j”(Po)(Pl _p3)/2 ’

where higher-order terms would involve higher-order
derivatives of j(p). Thus, to first order, the time that it
takes for region 2 to disappear is independent of its densi-
ty. Everything is determined by the density contrast be-
tween the two surrounding regions.

For the case of a convex curve, the second derivative
j"(p)<0, and in order to have a positive collision time
from Eq. (2.7), p; <p3. A negative collision time indicates
that the interfaces are moving away from each other and
no interaction occurs. This is in agreement with the
more general result that for any convex flux curve a re-
gion is destroyed only if p, <ps.

It is also interesting to notice that because in any col-
lision p; <ps, the conversion of two interfaces into one
must produce an interface with a negative value for m;.
Therefore, an interface with large positive mass (i.e., a
very high-density region, followed by a very low-density
region) is very unlikely to be involved in a collision. Such
an interface can only collide with an interface which has
a larger negative mass.

(2.6)

(2.7)

III. ANALYTIC CALCULATIONS

For early times it is possible to calculate analytically
the behavior of this model system. This simplification
comes from the fact that there are no correlations be-
tween the densities, and one can evaluate statistically
which density regions will be destroyed in such a random
ensemble. With this approach it is possible to determine
macroscopic quantities, such as the total number of inter-
faces as a function of time, or the time evolution of a
quantity averaged over all interfaces, like the average
value for |m;|. This latter quantity is of interest because
it can serve as an indicator for a state which is primarily
made up of interfaces which separate regions with a large
density contrast (i.e., a striped pattern).

The calculations presented here can be viewed as the
behavior which results if each interface is only permitted
to interact once. Thus the results will be accurate at ear-
ly times when the behavior is dominated by the destruc-
tion of the initial fluctuations that were created in very
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unfavorable environments and are quickly destroyed. At with a uniform distribution in the range [py— W,p,+ W ].
longer times, however, the behavior of the real system is From this procedure, the probability, n (/), that a single
determined by the interactions of interfaces which result region extends over a length [ is given by

from this first set of collisions. At this time, the predic-

tions from these calculations will be incorrect. However, No(No—1) | | (N2

the trends that emerge are already clear, and these calcu- n(l)=———m—- ‘ - (3.1
lations serve to illustrate the type of pattern that interact- L L

ing kinematic waves produce.

To be explicit, the situation considered here is a collec-  This distribution is normalized so that f én(l)dl =N,.
tion of N, points placed at random on the interval [0,L]. The first quantity calculated is the total number of in-
These points then become the location of the interfaces. terfaces as a function of time, N (¢). The number of inter-
The regions between the interfaces are assigned densities faces dN (t) destroyed in a time dt can be written as

J
Pot W pot W Pot I
dI\(;it W3f L dp, pzf dp3f dlH(p )8’ K=y o, (3.2)

where H (x) is the Heaviside step function, and K = — ;"' /2> 0. The integrals are over all possible values of the three
densities, and all possible lengths for the density regions. The 8 function sets the time for a collision to be that given by
Eq. (2.7). The step function ensures that a collision occurs only for p, <p;.

Since there is no dependence on p,, this integral is trivial to evaluate. It is possible to use the § function to remove
the integral over /. This essentially exchanges the variable / for Kt(p;—p;). This introduces a finite time cutoff, because
for large ¢, the only interfaces which are destroyed are those whose length / would be longer than the system size L.
Equation (3.2) then becomes

d WL

Nyo(N,— 1)K pot W N.—2
alii) e 2 f ’ P3f dPl [1=Kt(py—p)/L] " “(p3=py1), 3.3)
Po—
where the step function has been incorporatzed into the limits of the integral over p,. It is easiest to evaluate this in-
tegral by expanding the [1—Kt(p3;—p,)] ° ~in a series. The result after some algebra is

2NG(No— DKWt Yo 2 [Ng—2 | | —2kw1 1
N(t)—Ny=— . (3.4
(= No L 2| L | (i+Di+2)i+3) )
Of interest is the behavior as t —0. In this case (3.4) becomes
N(t)—Ny=—Ny(Ny—1)KWt /3L . (3.5)

This entire series can, of course, be summed numerically, and the results of this will be shown in the next section. It is
also worth noting that there is a natural time scale that is suggested by the forms of (3.4) and (3.5), which is
t'=(NyKW /L)t (the necessary factors of N, in each term in the series coming from the binomial coefficient).

It is also possible to calculate the time evolution of the average value for |m,| with this approach. Let

N(t) N(t)

2 im =3 lpi—=pisil - (3.6)

=0

The expression for the time derivative of this quantity is

dM (1)
tt W3f

p0+W i }

Po™ L
d dlH(ps—p )b |t —
Plf —w sz P3f0 (p3—p1) ‘t Kpy—p)

pot W

Dllps—pil—=lpa—pil =lps=pal1, 3.7

which is very similar to Eq. (3.3), with the addition of the term in brackets. This expression is the absolute value of the
mass for the new 1-3 interface minus the absolute values of the masses for the now destroyed 1-2 and 2-3 interfaces.
Evaluation of Eq. (3.7) proceeds in a way similar to that used in evaluating (3.2), with the final result that

16No(Ny— 1)K W2t No 2
L

No—=2| | —2KWt

L

1
(i+DG+2)0+3)6+4)0+5)

M) —My=—

, (3.8)

i=0 !
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where My =M (0). The value of M, can also be calculat-
ed analytically, with the result My =2N,W /3.

The average value for a single interface m(z)
=M(t)/N(2) is simply the ratio of the two series (3.4)
and (3.8). Again, it is interesting to look at the  —0 limit
for this quantity,

m(t)=2W/3+4(Ny—1)KWt*/45L . (3.9

This is probably the most significant result in this section.
Equation (3.9) clearly shows that the density contrast at
interfaces is becoming sharper in time. If the density pat-
tern were being driven to a more uniform density
behavior, then m (¢) would decrease in time, and the first
correction term would be negative.

IV. NUMERICAL RESULTS

This section presents the results from a direct simula-
tion of a set of density regions driven by the action of ki-
nematic waves. The results confirm the short-time
behavior of the two interface calculation and display a
power-law behavior in the long-time limit.

The simulation itself is very straightforward. Using a
random number generator [8], a series of N, values in the
range [0,L] are generated to represent the interfaces.
Each region between consecutive points is assigned a den-
sity value in the range [po— W,po+ W]. Once the densi-
ties are determined, the velocity of each region can then
be calculated.

Periodic boundary conditions are used for simplicity.
The simulation itself is event driven. For each pair of
consecutive interfaces, the time of collision can be calcu-
lated, and all interfaces are then propagated forward to
the next collision. The two interfaces which collided are
replaced by a new interface and the velocity for this new
interface is calculated. This procedure is repeated until
the configuration is such that the next collision occurs at
t=o0.

Because of the periodic boundary conditions, the only
stable configuration is that which has just two density re-
gions. If there are three different density regions, there
are then three interfaces traveling at different speeds.
Eventually, two of these interfaces will collide, producing
a configuration with only two density regions.

The only thing that remains is the choice of flux curves
Jj(p). The simplest possible curve that satisfies the con-
vexity condition is

ﬂm=%%u—“), @.1)
where R is the maximum density for the system, and J, is
one quarter of the maximum throughout of the system.
For this curve, the constant K =J,/R 2. Note that for a
flux curve of the form (4.1), Eq. (2.7) becomes exactly
true.

While a system may have a much more complicated
flux curve than (4.1), this form can be taken as the ap-
proximate curve around an average density p,. In this
case, J and R are fitting parameters, and the analysis us-
ing the simple parabolic form will hold as long as

W/py<<1.
=R =1.

Figure 7 shows the density evolution from an initial set
of 200 interfaces, with densities chosen in the range of
[0.3:0.8]. The gray scale indicates the density of the re-
gion, black being p=1, white signifying p=0. It is clear
from the picture that there is a large density contrast in
the final state. The high-density region has p=0.793,
and the low-density region has p=0.319.

This feature, that the densities of the two regions in the
final state are near to the extremal values, is found in all
simulations, independent of the values for the p, or W.
The surviving regions are not the largest or the smallest
that existed at £ =0, but are very near the extremes. This
can be understood by a simple argument. Consider the
interface which separates a region which has a density
very near the maximum, followed by a region near the
lowest allowed density. This interface has a very large
positive mass, and thus is very unlikely to collide with its
nearby interfaces. In the long-time limit, this is the type
of interface that can expected to live for a long time.

Figure 8 shows the early time behavior for systems
with 1000, 10000, and 100000 interface. The values for
(po, W) were (0.3,0.1), (0.6,0.3), and (0.8,0.2), respectively.
The x axis shows the rescaled time t'=(N,KW)t, as sug-
gested by the analytical calculations, while the y axis
shows the fraction of the initial interfaces that have been
destroyed. The simulation for N,= 100000 was only pro-
pagated up to the time where N (¢)=99 000.

Also shown in the figure is the results from a direct
summation of the series (3.4). The agreement at short

For the simulations presented here, J,

Position

Time

FIG. 7. Density pattern in model system. Gray scale indi-
cates density of region, with darker regions representing higher
densities. Position along the interval is the y axis, and time is
the x axis. Positive flux is in the +y direction. Thus, while the
pattern moves downward, the material actually is moving up-
ward.
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FIG. 8. Fraction of interfaces destroyed as a function of
time. The x axis is a rescaled time. The solid line shows the re-
sults from directly resuming the series from the two-interface
calculations.

times is clearly seen. However, as the fraction of inter-
faces destroyed becomes larger, there is a significant devi-
ation. The analytical result levels out when one-half of
the interfaces have been destroyed. This is to be expected
for a calculation in which each interface is only allowed
to interact one time. Consider the region of density p, in
a system of three regions and two interfaces. This region
will disappear only if p; <p;. With a random collection
of densities, this condition should be satisfied for one-half
of all configurations. Thus allowing only one iteration of
this region swallowing process means that one-half of all
of the density regions disappear and only one-half of the
original interfaces remain.

Figure 9 shows the value of [m (¢)—m] as a function
of time [where my=m(0)]. Again the time has been res-
caled, and the [m (t)—m] axis has been rescaled by the
value of W. Also shown in the figure are the results from
the summation of the series expression for m (¢). Again,
the short-time agreement is excellent. As in the case for
the number of interfaces, at long times, the two interface
calculation does not reproduce the correct behavior.

The turning down of the curve from the series summa-
tion is also to be expected. From (2.7), it is clear that col-
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FIG. 9. Average value of m (t) as a function of time. The x
axis is a rescaled time. The solid line is the result from a direct
summation of the two-interface calculation.
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FIG. 10. Density as a function of position along the interval.
The curve is taken from Fig. 7, and at this point in the simula-
tion 72 of the original 200 interfaces remain.

lisions which occur at very late times are those that have
a very small value for p,—p;. The resulting interfaces
that are created at late times have very small values of
m;=p,—p3. The two interfaces which were destroyed to
create this new interface would have had, on average,
larger values for m;. Thus the average value of m; for all
interfaces decreases as a result of these late-time col-
lisions.

The increase at short times in m (1) indicates that the
system is evolving toward a stripe-type pattern with very
large density contrasts at each interface. The final value
for m (t)=~2W, which is what is expected if most of the
interfaces are showing density contrasts as large as the
largest contrast available from the initial noise distribu-
tion. A picture of the density regions at N (t)/N,=0.36
is shown in Fig. 10. The system has clearly evolved to a
stripe pattern.

The evolution from this stripe state to the final two-
region configuration is also very interesting. A plot that
illustrates the long-time evolution is shown in Fig. 11.
The fraction of interfaces remaining is plotted as a func-
tion of the rescaled time. For the case of 10000 initial in-
terfaces, a power-law region can be seen over three de-
cades in time. The exponent for the power law is

0.00 T

=

logIO[N(t\)/NOJ
g

=== Ny = 1000 i
........ N, = 10,000 {
300 |- —— Mean Field .
|
o l < |
-4.00 -2.00 0.00 2.00 400 6.00
log, o [(N,W)t]

FIG. 11. Fraction of remaining interfaces as a function of
time. The x axis is a rescaled time. The solid line shows the
behavior predicted by the mean-field theory at long times.
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~—2/3.

The simplest theory of this long-time behavior involves
a mean-field-type argument. On general grounds, the
change in the number of interfaces as a function of time
might be expected to go as

dN(@) _ n
dt T’
where 7 is the time scale for a collision to occur. The ex-

pected form for 7=~1/Av, where I =1/N(¢) is the typical
length between interfaces, and Av is the velocity

(4.2)

difference between two consecutive interfaces. If Av is
approximately a constant, then (4.2) becomes
AN p2a 4.3)
dt
This has the long-time solution
N(t)~t~!. (4.4)

This is the wrong exponent, indicating that the correla-
tions from the stripe pattern are important in determin-
ing the long-time behavior of the system.

V. CONCLUSIONS AND DISCUSSION

The purpose of this paper is to show that the formation
of the density patterns apparent in granular systems and
traffic jams can be understood within the formalism of ki-
nematic wave theory. A random pattern due to the noise
in the system is organized into a set of macroscopic den-
sity regions with large density contrasts. Analytic calcu-
lation of the early-time behavior agrees well with the
results from numerical simulations. The long-time
behavior exhibits an anomalous power-law region.

The major fault with the approach taken here is that
the diffusion process that must occur across an interface
which separates regions with different densities has been
totally ignored. This diffusion effect will cause the fronts
to spread out and become less sharp in time. Part of this
effect is already present in the kinematic wave formalism
itself [7], and will be discussed here. Consider the case of
linear fronts, instead of perfectly sharp interfaces, as

FIG. 12. Density fluctuation with linear density fronts rather
than sharp interfaces. Under the evolution of the kinetic wave
theory, the interface at 4 becomes sharper, while the interface
at B diffuses in time.

shown in Fig. 12. Within the kinematic wave approach,
it can be shown that the system will evolve a well-defined
shock behind the density fluctuation. However, the lead-
ing edge will spread out in time, as indicated in the figure.
For a parabolic flux curve, the linear form for the front of
the wave will be preserved. The time, T, at which the
point B reaches point 4 is given by

Tzl/K(pl"po) ’ (5.1

where / is the initial distance between points A and B.
This time is of the same order as the time for a typical in-
terface collision driven by the density contrast p;—po.
Thus this diffusion effect is relevant, and neglecting it has
probably left out some of the physics. However, this
diffusion effect does not completely dominate the system
either. The reality is probably somewhere in between,
and the work presented here is a first attempt to examine
interacting density fluctuations within the kinematic
wave approach. There certainly is other work to be done.
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FIG. 7. Density pattern in model system. Gray scale indi-
cates density of region, with darker regions representing higher
densities. Position along the interval is the y axis, and time is
the x axis. Positive flux is in the +y direction. Thus, while the
pattern moves downward, the material actually is moving up-
ward.



